

Material and Component Development for Thermal Energy Storage

Wim van Helden

AEE - Institute for Sustainable Technologies (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, AUSTRIA

International Collaboration

Material and Component Development for Thermal Energy Storage

- International Energy Agency joint research and development project
- Joint: Solar Heating and Cooling (SHC) and Energy Conservation through Energy Storage (ECES)
- 3-year duration, 2017-2019

Task58/Annex33

- Materials and Application Experts (over 60 from 13 countries)
- Semi-annual experts meetings
- Work on common goals

Thermal Energy Storage is a Key Enabling Technology

3 Main principles for Heat Storage

AEE INTEC

Sensible heat

- principle: heat capacity
- reservoirs, aquifers, ground/soil

Compact Thermal Energy Storage

If available volume limited -> Compact storage

Scope of T58A33

AEE INTEC

Advanced materials for latent (PCM) and chemical thermal energy storage (TCM) materials.

Three different scales:

• Material properties,

behaviour from molecular to bulk scale, material synthesis, micro-scale mass transport and sorption reactions;

- Material performance in components materials behaviour, also within the storage system; heat, mass, and vapour transport, wall-wall and wallmaterial interactions, reactor design;
- Storage system implementation performance of a storage within a heating or cooling system, including e.g. economical feasibility studies, case studies, and system tests.

SHC 58 ECES 33

Subtask structure

PCMTCMSubtask 1: "Energy Relevant Applications for an
Application-oriented Development of Improved Storage
Materials"Andreas Hauer (ZAE, DE) /Wim van Helden(AEE Intec, A)Subtask 2: "Development and Characterization of
Improved Materials"Stefan Gschwander (ISE, DE)Alenka Ristic (NIC, SI)

Subtask 3: "Measuring Procedures and Testing under Application Conditions"

Christoph Rathgeber (ZAE, DE) Daniel Lager (AIT, A)

Subtask 4: "Component Design for innovative TES Materials"

(Ana Lazaro, Uni Zaragoza, ES) Benjamin Fumey (EMPA, CH)

T58A33 experts group Ljubljana, April 2018

Materials and component development examples

- PCM components
- Solid sorption
- Hydrates and ammoniates
- Materials characterisation and testing
- Open and closed systems
- Seasonal storage systems
- Storage for industry

PCM components development

AEE INTEC

University of Bayreuth (DE) is working on macroencapsuled PCM for heat transport. Figure shows cost comparison of macro-encapsulated

test capsules and low-cost alternatives

PCM components development

AEE INTEC

University of the Basque Country (ES) has developed a compact-plate PCM TES for heating and DHW. Cycling behaviour is investigated in prototype.

(Solid) sorption

E. Lävemann, ZAE Bayern

www.aee-intec.at

Materials Development - Sorption

AEE INTEC

National Institute of Chemistry – Slovenia Development of microporous aluminophosphates Improved performance

10 to 20 µm

MOF-801: round particles of 200 nm

Zeolite 4A: cubes of 2 μm

	Maximum	Energy	Charging	Decrease in
	water uptake	storage	temperature	water capacity
	(g/g)	capacity	(°C)	(%) after 20
		(Wh/kg)		cycles
AIPO ₄ -LTA	0.42	373	65	<0.3
MOF -801	0.36	323	80	> 3
Zeolite 4A	0.28	350	300	<0.3

Materials development – Novel TCM Ammonia as sorbate

www.aee-intec.at

 $[Cu(NH_3)_4](SO_4)$ on zeolithe

 $[Cu(NH_3)_4](SO_4)$ on zeolithe

Copper sulfate with ammonia: 1770 kJ/kg storage density; volume expansion controlled by integration into zeolite (215 kJ/kg) (TU Vienna, AT)

Subtask 3T Measurement procedure improvement for TCM

www.aee-intec.at

AEE INTEC

Results for water uptake of zeolite sample by four different partners

Analysis of possible reasons for disagreement and redefinition of measurement procedure

Compact seasonal thermal storage system with salt hydrates

Open Sorption

AEE INTEC

OFFSOR Project (FHOÖ Wels, AT) Open Sorption Technology for long-term Thermal Storage

Development goals

Process technology:

- Material transport
- Abrasion of storage material
- Optimisation of desorption in summer Preparation of moist air in winter
- Control strategy

Component Development High temperature TES: Oxide – Hydroxide Reaction

TU Munich:

Finalized construction of a 10kW pressurized fluidized bed pilot reactor

(30 I, up to 7 bar and 700 °C, Nitrogen and Steam Atmosphere)

In conclusion

- Heat and cold use if of major importance in the global energy system
- Thermal Storage is an enabling technology for a broad field of applications/technologies
- Long-term ongoing collaboration between materials
 experts and systems experts
- IEA SHC/ECES Task58/Annex33 is delivering results in materials and component development for (compact) thermal energy storage technologies
- Continued effort is required to arrive at optimal TES solutions

Thank you for your Attention